

Journal of Organometallic Chemistry 498 (1995) 171-176

Hydrogenolysis of tetra(allyl)tungsten in the presence of tertiary phosphines: synthesis of tris(dmpm)tungsten (0)

Rein U. Kirss

Department of Chemistry, Northeastern University, Boston, MA 02115, USA

Received 20 December 1994; in revised form 7 February 1995

Abstract

Reaction of $W(\eta^3-C_3H_5)_4$ with PMe_2Ph and $Me_2PCH_2PMe_2$ (dmpm) under 1 atm of H_2 in toluene at 110–120 °C yielded $WH_4(PMe_2Ph)_4$ and $W(dmpm)_3$, respectively. Spectroscopic studies on the hydrogenolysis of $W(\eta^3-C_3H_5)_4$ in the presence of tertiary phosphines PEt₃, PMePh₂, and PPh₃ were consistent with formation of the tungsten phosphine hydride complexes $WH_6(PEt_3)_3$, $WH_4(PMePh_2)_4$ and $WH_6(PPh_3)_3$. $W(\eta^3-C_3H_5)_4$ has advantages over similar hydrogenolysis of WMe_6 in that $W(\eta^3-C_3H_5)_4$ is considerably more thermally and air stable. Pyrolysis of $WH_4(PMePh_2)_4$ at 400 °C under a hydrogen flow yielded a shiny tungsten powder contaminated by hydrocarbon residues.

Keywords: Tungsten; Phosphines; Hydrides; Hydrogenolysis; Hydrogenation

1. Introduction

Tungsten hexahalides are used extensively for the chemical vapor deposition (CVD) of tungsten thin films; however, the corrosivity and water-sensitivity of tungsten halides and their decomposition products continue to generate an interest in volatile organometallic tungsten compounds as alternative precursors for the CVD of tungsten metal in microelectronic devices [1]. Alternative precursors to WF₆ include tungsten hexacarbonyl [2], tetra(allyl)tungsten [3], ditungstenhexakis(cyclohexyloxide) [4], bis(cyclopentadienyl)tungsten dihydride [5], tris(methylvinylketone)tungsten, and tris(butadiene)tungsten [6]. Films deposited from these reagents contain varying amounts of carbon in the product, highly dependant on the deposition conditions. Precursors lacking direct tungsten-carbon bonds are, in principle, attractive as alternative precursors for CVD of tungsten metal due to the absence of direct metal carbon bonds. Hexakis(trifluorophosphine)tungsten, $W(PF_3)_6$, removes the potential for carbon impurities but introduces sufficient phosphorous into the film to limit the utility of $W(PF_3)_6$ as a precursor for tungsten films in electronic applications [7]. In the present paper we describe the hydrogenolysis of tetra(allyl)tungsten in the presence of tertiary phosphines to tungsten phosphine polyhydrides $(WH_x(PR_3)_y \text{ for } x = 4, 6, y = 3, 4, R_3 = Et_3, Me_2Ph,$

 $MePh_2$ or Ph_3) and solid state pyrolysis of $WH_4(PMePh_2)_4$.

2. Experimental

All compounds were handled using Schlenck techniques, in an M. I. Braun glovebox under a purified nitrogen or argon atmosphere or on a vacuum line equipped with oil diffusion and mechanical pumps (10^{-3}) Torr) [8]. Solvents were purified by refluxing over Na/benzophenone (benzene, ether, hexane, pentane, tetrahydrofuran, toluene) and distilled prior to use. WCl₆, phosphines and allyl magnesium bromide were purchased from Strem Chemical and used as received. Benzene-d₆ was purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were recorded on a Varian 300XL spectrometer in either flame sealed 5 mm tubes or in 5 mm tubes equipped with a Teflon valve. Proton chemical shifts are relative to residual protons in the solvent ($C_6D_5H \delta$ 7.15). Authentic samples of $WH_4(PMePh_2)_4$ and $WH_4(PMe_2Ph)_4$ were prepared by literature procedures from $WCl_4(PMePh_2)2$ and $WCl_4(PMe_2Ph)_2$ [11]. Elemental analyses were performed by Galbraith Laboratories (Knoxville, TN) and Desert Analytics (Tucson, AZ).

2.1. Preparation of $W(OPh)_{6}$ [9]

In a typical procedure, 24 g (0.060 mols) WCl₆ were added as a solid to 84 g (0.90 mols) of phenol in a 250 ml flask under nitrogen. The flask was connected to a trap containing aqueous NaOH and heated to reflux for 3 h under nitrogen. During this time the mixture turns dark red accompanied by the evolution of HCl. The temperature was reduced to just below reflux and the mixture heated for an additional 4 h to ensure complete reaction. After cooling to room temperature, absolute ethanol (150 ml) was added and the red insoluble solid, W(OPh)₆ (39 g, 88% yield) was collected by filtration and dried under vacuum.

2.2. Preparation of $W(\eta^3 - C_3 H_5)_4$

Tetra(allyl)tungsten, $W(\eta^3-C_3H_5)_4$, was prepared using literature procedures with some minor modifications [10]. Hexaphenoxytungsten, $W(OPh)_6$, 12 g (0.016 mols), was dissolved in 50 ml of THF and added to 130 ml (0.13 mols) of a 1.0 M solution of allyl MgBr in diethyl ether at room temperature from an addition funnel. The mixture was stirred overnight. After evaporation of the THF under vacuum, the crude solid was transfered to a Soxhlet extractor and extracted for 8 h with pentane. Evaporation of the pentane solution and sublimation of the pale yellow solid at 80 °C and 10⁻² Torr yielded 3.7 g (60% based on W(OPh)₆) of white $W(\eta^3-C_3H_5)_4$. The product was identified by comparison of the ¹H NMR spectrum with literature data [9].

2.3. Synthesis of $WH_4(PMe_2Ph)_4$ from $W(\eta^3-C_3H_5)_4$, dimethylphenylphosphine, and hydrogen

A 2.5×40 cm thick wall pyrex tube equipped with a Teflon valve (Chemglass, 2 mm bore) was charged with 0.338 g (0.97 mmols) of freshly sublimed W(η^3 -C₃H₅)₄ in the glove box. Slightly more than three equivalents of PMe₂Ph, 0.44 g (3.2 mmols) was added and the tube was flushed for 20 min with hydrogen. Dried, distilled toluene, 8-10 ml, was degassed by bubbling hydrogen through the solvent for 15 min and added to the reaction vessel, yielding a colorless solution. The tube was sealed and immersed to the depth of 1-2 inches in a 120-130 °C oil bath behind a safety shield for 72 h. The tube was not agitated during the heating process. After each 24 h reaction period, the tube was cooled to room temperature and flushed with fresh hydrogen before heating was continued. Reaction was judged to be complete when the solution was yellow and traces of black solid were observed on the walls of the reaction tube. After cooling to room temperature, the toluene was evaporated under vacuum and the residue extracted with 3×15 ml of pentane. The pentane extracts were filtered through a layer of Celite. Solution volume was reduced to about 3–5 ml before chilling to -78 °C. Solid products were collected by removal of the supernatant by syringe. A 0.476 g (80% yield) of yellow WH₄(PMe₂Ph)₄ was collected and dried under vacuum. ¹H (C₆D₆) – 2.69 m (4 H, W-H), 1.55 d (24 H, PMe₂Ph), 7.01 t (8 H, aryl protons), 7.12 t (4 H, aryl protons), 7.63 br s (8 H, aryl protons); ³¹P (C₆D₆): -8.85 s (¹⁸³W satellites, -8.2, -9.5 ppm $J_{WP} = 168$ Hz).

2.4. Synthesis of $W(dmpm)_3$ from $W(\eta^3-C_3H_5)_4$, bis(dimethylphosphino)methane, (dmpm), and hydrogen

A 2.5×40 cm thick wall pyrex tube equipped with a Teflon valve (Chemglass, 2 mm bore) was charged with 0.391 g (1.12 mmols) of freshly sublimed W(η^3 -C₃H₅)₄ in the glove box. Slightly more than two equivalents, 0.358 g (2.63 mmols), of dmpm was added and the tube was flushed for 20 min with hydrogen. Dried, distilled toluene, 8-10 ml, was degassed by bubbling hydrogen through the solvent for 15 min and added to the reaction vessel, yielding a colorless solution. The tube was sealed and immersed to the depth of 1-2 inches in a 120-130 °C oil bath behind a safety shield for 60 h. The tube was not agitated during the heating process. After each 24 h reaction period, the tube was cooled to room temperature and flushed with fresh hydrogen before heating was continued. Reaction was judged to be complete when the solution was red and small amounts of black solid were observed on the walls of the reaction tube. After cooling to room temperature, the toluene was evaporated under vacuum and the residue extracted with 5×10 ml of hexane. The hexane extracts were filtered through a layer of Celite. Solution volume was reduced to about 3–5 ml before chilling to -78 °C. A 0.100 g (20% yield) of orange solid W(dmpm)₃ was isolated by removal of the supernatant by syringe and subsequent drying of the product under vacuum. Anal. Calc. for $C_{15}H_{42}P_6W$: 30.42% C, 7.15% H; found: 30.11% C, 7.14% H. ¹H (C_6D_6): δ 1.64 t (12 H, Me_2P -), 4.28 m (2 H, PC H_2P); ³¹P (C_6D_6): δ -54.9 s (¹⁸³W satellites -53.8, -55.9 J_{WP} = 258 Hz).

2.5. Attempted synthesis of $H_6W(PEt_3)_3$ from $W(\eta^3 - C_3H_5)_4$, triethylphosphine, and hydrogen

A 2.5 × 40 cm thick wall pyrex tube equipped with a Teflon valve (Chemglass, 2 mm bore) was charged with 0.150 g (0.43 mmols) of freshly sublimed $W(\eta^3-C_3H_5)_4$ in the glove box. Slightly more than two equivalents, 0.223 g (1.89 mmols), of PEt₃ was added and the tube was flushed for 20 min with hydrogen. Dried, distilled toluene, 8–10 ml, was degassed by bubbling hydrogen through the solvent for 15 min and added to the reaction vessel, yielding a colorless solution. The tube was sealed and immersed to the depth of 1–2 inches in a

173

100-120 °C oil bath behind a safety shield. The tube was not agitated during the heating process. After 18 h, the tube was cooled to room temperature and flushed with fresh hydrogen before heating was continued for an additional 6 h. Reaction was judged to be complete when the solution was brown and small amounts of black solid were observed on the walls of the reaction tube. After cooling to room temperature, the toluene was evaporated under vacuum and the residue extracted with 5×10 ml of hexane. The hexane extracts were filtered through a layer of Celite. Solution volume was reduced to about 3-5 ml before chilling to -78 °C The product was a brown oil which could not be purified further. ¹H (C₆D₆) δ -3.81 q (6 H, W-H, J_{PH} = 36 Hz), 0.86 t (27 H, PCH₂CH3), 1.09 q of d (18 H, PCH_2CH_3). ³¹ P (C₆D₆) δ 25.8 s (¹⁸³W satellites, 25.4, 26.2 ppm, $J_{WP} = 75$ Hz).

2.6. General procedure for NMR studies of the reaction of $W(\eta^3-C_3H_5)_4$ with tertiary phosphines under hydrogen

The same procedure was used for all reactions of $W(\eta^3-C_3H_5)_4$ with phosphines under hydrogen. $W(\eta^3 (C_3H_5)_4$ was placed in a 5 mm NMR tube equipped with a Teflon valve in the glove box. A solution of phosphine (PEt₃, PMePh₂, PPh₃, Me₂PCH₂PMe₂) in C_6D_6 was added. The sample was removed from the glove box and degassed with three freeze/pump/thaw cycles on a vacuum line $(10^{-3}$ Torr). The tube was filled with hydrogen and sealed. The sample was heated to 60 °C in an oil bath and the progress of the reaction monitored by ¹H NMR spectroscopy. The tube was periodically charged with fresh hydrogen using the procedure described above. In each case, disappearance of the resonances for $W(\eta^3-C_3H_5)_4$ was accompanied by the appearance of resonances for propane, C_3H_8 , at δ 0.88 (t, 6 H, $CH_3CH_2CH_3$) and 1.28 (multiplet, 2 H, $CH_3CH_2CH_3$), propene, at δ 1.54 d ($CH_3CH_2CH_2$), 4.96 m, $(CH_3CH_2CH_2)$, 5.72 m $(CH_3CH_2CH_2)$, and resonances for $WH_x(PR_3)_y$ as described below. The solutions remained homogeneous throughout the experiment.

2.7. $PR_3 = PEt_3$

0.0138 g (0.04 mmols) W(η^3 -C₃H₅)₄ and 0.0150 g (0.13 mmols) PEt₃ in 1 ml C₆D₆ were reacted under 650 Torr H₂ at 80 °C for 24 h. ¹H (C₆D₆) δ -3.81 q (6 H, W-H, J_{PH} = 36 Hz), 0.86 t (27 H, PCH₂CH₃), 1.09 q of d (18 H, PCH₂CH₃). ³¹P (C₆D₆) δ 25.8 s (¹⁸³W satellites, 25.4, 26.2 ppm, J_{WP} = 75 Hz). The only other resonance observed in the ³¹P NMR, at -19 ppm, was assigned to unreacted PEt₃ by comparison with a known sample.

2.8. $PR_3 = PMePh_2$

Approx. 10–15 mg W(η^3 -C₃H₅)₄ and 13 equivalents of PMePh₂ (from integration of the ¹H NMR spectrum) in 1 ml C₆D₆ were reacted under 650 Torr H₂ at 80 °C for 24 h. ¹H (C₆D₆) – 1.7 (W-H, complex multiplet), 1.72 d, (PMePh₂), 7.08, 7.59 br s (PMePh₂). ³¹P (C₆D₆) δ 12.7 (¹⁸³W satellites, 11.9, 13.3 ppm J_{WP} = 150 Hz). The only other resonance observed in the ³¹P NMR, at -26 ppm, was assigned to unreacted PMePh₂ by comparison with a known sample.

2.9. $PR_3 = PPh_3$

Approx. 10–15 mg W(η^3 -C₃H₅)₄ and 3 equivalents PPh₃ (as determined by integration of the ¹H NMR spectrum) in 1 ml C₆D₆ were reacted under 650 Torr H₂ at 80 °C for 24 h. ¹H (C₆D₆) δ –0.34 (W-H, quartet, 6 H), 6.85 br s, (27 H, PPh₃), 7.68 br s (18 H, PPh₃); ³¹P (C₆D₆) δ 41.8 t. The only other resonance observed in the ³¹P NMR, at -5 ppm, was assigned to unreacted PPh₃ by comparison with a known sample.

2.10. $PR_3 = Me_2PCH_2PMe_2$

0.044 g (0.125 mmols) $W(\eta^3-C_3H_5)_4$ and 0.024 g (0.176 mmols) $Me_2PCH_2PMe_2$ in 1 ml C_6D_6 were reacted under 650 Torr H_2 in a 110 °C oil bath for 118 h. ¹H (C_6D_6): no W-H resonances observed between 0 and -17 ppm. ¹H (C_6D_6): δ 1.64 t (12 H, Me_2P -), 4.28 m (2 H, PCH_2P). ³P (C_6D_6): δ -54.9 ppm, ¹⁸³W satellites -53.8, -55.9 J_{WP} = 258 Hz. No other resonances were observed in the ³¹P NMR after 6 h of reaction.

2.11. Reaction with PEt_3 in the absence of H_2

Approx. 10–15 mg W(η^3 -C₃H₅)₄ and 5 equivalents of PEt₃ (from integration of the ¹H NMR spectrum) in 1 ml C₆D₆ were reacted at 80 °C for 288 h. No changes were observed in the spectrum.

2.12. Reaction with H_2 in the absence of PEt₃

Approx. 10–15 mg W(η^3 -C₃H₅)₄ and 600 Torr H₂ in 1 ml C₆D₆ were reacted at ambient temperature for 24 h. Formation of a black precipitate was observed after a few hours concurrently with the observation of propene in the ¹H NMR spectrum.

2.13. Reaction with ethylene

0.0201 g (0.058 mmols) $W(\eta^3-C_3H_5)_4$ and 0.020 mols C_2H_4 in 1 ml of C_6D_6 were reacted at 80 °C for 72 h, yielding a black precipitate and the observation of propene in addition to the ethylene present in solution.

2.14. Reaction with ethylene and H_2

Approx. 10-15 mg ($\approx 0.03-0.04$ mmols) W(η^3 -C₃H₅)₄, 0.10 mmols C₂H₄ and 500 Torr H₂ in 1 ml C₆D₆ were reacted at 80 °C for 72 h. The ratio of C₂H₆ to C₂H₄ was observed to be 14:1 and propene was the only other product observed in the reaction.

2.15. Pyrolysis studies of $WH_4(PMePh_2)_4$

0.237 g (0.24 mmols) of WH₄(PMePh₂)₄ were placed in a quartz boat in the center of a 1×14 inch pyrex tube in a Lindbergh tube furnace. The tube was kept under a flow of dry, oxygen-free hydrogen (flow rate = 5 ml min⁻¹, NovapureTM Inert Gas Purifier, Novapure Corporation, Danbury, CT 06810) while the oven temperature was raised to 400 °C. The WH₄(PMePh₂)₄ was pyrolyzed for 6 h at 400 °C before cooling to room temperature overnight under a continuous hydrogen flow. The shiny, silvery powder, 0.049 g (20.6% ceramic yield compared to theoretical ceramic yield of 18.6% based on complete decomposition to W metal) remaining in the boat analyzed for 1.57% C and 0.28% H.

3. Results

3.1. Reactions of $W(\eta^3 - C_3 H_5)_4$ with tertiary phosphines and hydrogen

Reaction of tetra(allyl)tungsten with dimethylphenylphosphine under hydrogen leads to the loss of all four allyl groups as propane/propene mixtures and isolation of $WH_4(PMe_2Ph)_4$ in 66% yield. The product was identified by comparison of the ¹H and ³¹P NMR spectra with literature data for $WH_4(PMe_2Ph)_4$ prepared by lithium aluminum hydride reduction of $WCl_4(PMe_2Ph_2)_2$. Hydrogenolysis of tetra(allyl)tungsten in the presence of the chelating phosphine, bis(dimethylphosphino)methane (dmpm), however, yielded

Table 1

Products from reactions of	$W(\eta)$	'-C ₃ H ₅) ₄ ,	, tertiary	phosphines	and	hydrogen
----------------------------	-----------	--	------------	------------	-----	----------

the homoleptic tris(phosphine) derivative W(dmpm)₃ in 20% yield. A similar compound, W(dmpe)₃, has been prepared by metal vapor synthesis from W atoms and dmpe in 50% yield and in 10% yield from reduction of WCl₆, dmpe and LiAlH₄. Reactions of W(η^3 -C₃H₅)₄ with triethylphosphine and hydrogen yielded an oil which could not be crystallized although spectroscopic evidence was consistent with the formation of a tungsten hexahydride WH₆(PEt₃)₃. The effect of hydrogen pressure and agitation of the reaction mixtures on the rate of conversion were not investigated.

The hydrogenolysis of $W(\eta^3-C_3H_5)_4$ in the presence of a series tertiary phosphines was followed by ¹H and ³¹P NMR spectroscopy. Only a single tungsten hydride resonance was observed in each of these reactions. The number of phosphine and hydride ligands can be readily determined from integration of the W-H and phosphine proton resonances as well as from the splitting of the W-H resonances by the phosphine ligands (Table 1). In reactions involving PEt₃ and PPh₃, quartet patterns (1:3:3:1 ratio) for the W-H resonance were consistent with formation of hexahydrides of formula WH₆(PR₃)₃ (PR₃ = PEt₃, PPh₃). ³¹P NMR spectra consist of singlets with low intensity doublets due to phosphorus coupling to ¹⁸³W (I = 1/2, 14% natural abundance).

Hydrogenolysis of $W(\eta^3-C_3H_5)_4/PMePh_2$ mixtures yielded $WH_4(PMePh_2)_4$ as detemined by NMR spectroscopy and comparison with literature data [12,14]. $WH_4(PMePh_2)_4$ and $WH_4(PMe_2Ph)_4$ show a complex W-H resonance (AA'A''A''' XX' X''' pattern) at ambient temperature which resolves into a quintet upon heating [11].

In the absence of hydrogen, no reaction was observed between $W(\eta^3 - C_3H_5)_4$ and excess PEt₃ after 12 days of reaction at 80 °C. When the phosphine was replaced by ethylene, the rate of decomposition was faster, with significant decomposition (to propene and black, carbonaceous residues [3b]) being observable only after 3 days at 80 °C. Hydrogenation of ethylene to ethane was observed in mixtures of $W(\eta^3 - C_3H_5)_4$, H_2 and ethylene

Phosphine	Product	¹ H NMR (W–H)	31 P NMR (J_{WP})	
PMe ₃	WH ₄ (PMe ₃) ₄	-3.92	- 27.3 (169)	
PEta	$WH_6(PEt_3)_3$	− 3.8 1 q	25.8 (75 Hz)	
PMe ₂ Ph	$WH_4(PMe_2Ph)_4$	-2.6 m ^a	- 8.85 (168)	
	$WH_6(PMe_2Ph)_3$	— 1.94 q [13]		
	0 2 0	-2.18 q *		
P ⁱ Pr ₂ Ph	WH ₆ (P ⁱ Pr ₂ Ph) ₃	— 3.4 q [16]	55.5 (63) [16]	
PMePh ₂	WH ₄ (PMePh ₂) ₄	-2.7 m	12.7 (150)	
PPh ₃	WH ₆ (PPh ₃) ₃	-0.34 q	41.8	
Ph ₂ PCH ₂ PPh ₂ (dppm)	W(dppm) ₃	_	-25.7	
$Me_2PCH_2PMe_2$ (dmpm)	W(dmpm) ₃	_	- 54.9 (258)	

^a - 2.8 ppm Ref. 11.

only after heating to 80 °C for 5 days. The olefin hydrogenation was accompanied by the formation of propane and partial decomposition of the tetra(allyl)tungsten to a black solid. By comparison, the first signs of decomposition of $W(\eta^3-C_3H_5)_4$ to a black solid and propene as the major soluble product were observed after 6 h at room temperature [3b]. Under a hydrogen atmosphere, this decomposition is equally rapid, yielding a mixture of propene and propane as determined by ¹H NMR.

3.2. Solid state pyrolysis study of $WH_4(PMePh_2)_4$

Thermal decomposition of $WH_4(PMePh_2)_4$ at 400 °C under a continuous flow of hydrogen led to isolation of a shiny metallic powder which analyzed for 1.57% C and 0.28% H, corresponding to a formula W_4CH_2 . The observation of residual carbon was consistent with the observed ceramic yield, 20.6% vs. 18.6%, theoretically.

4. Discussion

Tungsten hydrides of general formula $WH_x(PR_3)_y$ $(x = 2, 4, 6; y = 5, 4, 3, respectively, PR_3 = alkyl, aryl$ and mixed tertiary alkyl(aryl)phosphines) have been known for over 20 years and can be prepared from lithium aluminum hydride or sodium borohydride reduction of $WCl_4(PR_3)_2$ as well as by hydrogenolysis of hexamethyltungsten in the presence of phosphines [15-17]. The generation of metal-hydrides from hydrogenolysis of late transition metal allyl complexes is also well documented (e.g. HRh(dmope) from η^3 -2-CH₃C₃H₄-Rh(dmope) where dmope refers to $(MeO)_2PCH_2CH_2$ - $P(OMe)_2$. The formation of $WH_4(PMe_2Ph)_4$, $WH_4(PMePh_2)_4$, $WH_6(PEt_3)_3$ and $WH_6(PPh_3)_3$ from H_2 , $W(\eta^3-C_3H_5)_4$ and phosphines is therefore not surprising. There are, nevertheless, differences between the synthetic methods worthy of further comment. The synthesis of $WH_4(PMe_3)_4$ from $WMe_6 \cdot PMe_3$ requires precisely three equivalents of PMe₃ and 3 atm H_2 [15]. An excess of PMe_3 leads to the isolation of $WH_2(PMe_3)_5$. While yields of $WH_2(PMe_3)_5$ and $WH_4(PMe_3)_4$ were essentially quantitative, yields of polyhydrides with more sterically hindered ligands (e.g. PiPr₂Ph) were only about 10%. Spectroscopic studies of the reaction between $W(\eta^3-C_3H_5)_4$, phosphines and H₂, however, suggest that ≈ 1 atm of hydrogen and, in some cases, even excess phosphine still lead to the formation of $WH_4(PMe_2Ph)_4$, $WH_4(PMePh_2)_4$, $WH_6(PEt_3)_3$ and $WH_6(PPh_3)_3$. Curiously, the preparation of $WH_6(PiPr_3)_3$, $WH_6(PiPr_2Ph)_3$, and $WH_4(PMe_2Ph)_4$ from hexamethyltungsten and the appropriate phosphine was performed under 250 atm of hydrogen [16]. Comparison of the preparative methods for $WH_4(PMe_2Ph)_4$ indicates yields of 30%, 66%, and 15%, respectively, for hydrogenolysis of WMe₆, hydrogenolysis of W(η^3 -C₃H₅)₄, and reduction of WCl₄(PMe₂Ph)₄). The overall yield of WH₄(PMe₂Ph)₄ from W(OPh)₆ is 70%, the best yield of the three methods for synthesis of this compound. A possible explanation for the improved yields of WH₄(PMe₂Ph)₄ at lower hydrogen pressures starting from W(η^3 -C₃H₅)₄ may be the ability of the allyl ligand to undergo hapticity changes from η^3 to η^1 , generating coordinatively unsaturated intermediates capable of activating hydrogen. In contrast, the hydrogenation of WMe₆ requires a σ -bond metathesis pathway involving a four-centered intermediate (Scheme 1) [15].

$$W(\eta^{3}-C_{3}H_{5}) = W(\eta^{3}-C_{3}H_{5}) = Me_{5}W-\cdots-CH_{3}$$

Scheme 1.

Tungsten phosphine polyhydrides, $WH_r(PR_3)_v$, represent a class of potential precursors for CVD of tungsten in which there are no tungsten-carbon bonds. Tungsten phosphine polyhydrides do not appear to be volatile; however, in situ, gas phase formation of $WH_x(PR_3)_y$ from volatile $W(\eta^3 - C_3H_5)_4$ (sublimes 80 °C at 10^{-2} Torr), a low molecular weight phosphine and a hydrogen carrier gas is attractive as a precursor for tungsten CVD. From the perspective of CVD, tetra(allyl)tungsten has considerable advantages over WMe_{6} in that it is air stable for short periods and thermally stable up to ≈ 60 °C whereas WMe₆ is highly sensitive to oxygen and decomposes (at times explosively) above -25 °C [17]. While the gas phase formation of WH_x(PR₃)_y from W(η^3 -C₃H₅)₄ is the subject of current investigations, the utility of $WH_{r}(PR_{3})_{v}$ was evaluated through solid state pyrolysis experiments on $WH_4(PMePh_2)_4$. Under a continuous flow of hydrogen at 400 °C, solid $WH_4(PMePh_2)_4$ was converted to a shiny powder which contained tungsten and hydrocarbon residues. The relatively low vapor pressure of PMePh₂ (≈ 120 °C, 2 mmHg) and potentially reactive C-H bonds (o-metallation of aryl groups) [18] may contribute to the carbon and hydrogen impurities observed in the final product. The effects of reaction temperature, particle size and the choice of phosphine on the purity of the final product will be the subject of further studies.

References

- (a) A. Sherman, Chemical Vapor Deposition for Microelectronics, Noyes Publications, Park Ridge, NJ, 1987; (b) S.S. Wong and S. Furukawa (eds.), Tungsten and Other Refractory Metals for VLSI Applications, Vol. V, Materials Research Society, Pittsburgh, PA, 1990.
- [2] (a) I.M. Watson, J.A. Connor and R. Whyman, Polyhedron, 8 (1989) 1794; (b) M. Diem, M. Fisk and J.Goldman, Thin Solid

Films, 107 (1983) 39; (c) G.J. Vogt, Vac. Sci. Technol., 20 (1982) 1336; (d) N.S. Gluck, G.J. Wolga, C.E. Bartosch, W. Ho and Z. Ying, J. Appl. Phys., 61 (1987) 998; (e) D.K. Flynn, J.I. Steinfeld and D.S. Sethi, J. Appl Phys., 59 (1984) 3914; (f) T. Kado and Y. Noda, J. Electrochem. Soc., 136 (1989) 2184; (g) G.I. Christianz, T.J. Elms, G.N. Pain and R.R. Pierson, J. Cryst. Growth, 93 (1988) 589.

- [3] (a) R.U. Kirss, Appl. Organometal. Chem., 6 (1992) 609; (b)
 R.U. Kirss, J. Chen, J. and R.B. Hallock, Mater. Res. Soc., 250 (1992) 303.
- [4] D.V. Baxter, M.H. Chisholm, V. DiStasi and J.A. Klang, Chem. Mater., 3 (1991) 221.
- [5] B. Niemer, A.A. Zinn, W.K. Stovall, P.E. Gee, R.F. Hicks and H.D. Kaesz J. Appl. Phys, 61 (1992) 1793.
- [6] R.U. Kirss, D.G. Gordon, P.S. Kirlin, Mater. Res. Soc., 282 (1993) 275.
- [7] (a) E. Sirtl, US Patent, 3 619 288, 1971; (b) K. Hieber, J. Von Tomkewitsch, H. Treichel, T. Kruck and O. Spindler, Eur. Pat. Appl. EP 338, 206, 1989.
- [8] D.F. Shriver, Manipulation of Air Sensitive Compounds, Mc-Graw Hill, New York, 1969.
- [9] H. Funk and W. Baumann, Z. Anorg. Allg. Chem., 231 (1937) 264.

- [10] R. Benn, T.H. Brock, M.C.F.B Dias, P.W. Jolly, A. Rufinska, G. Schroth, K. Seevogel and B.Wassmuth, *Polyhedron*, 9 (1990) 11.
- [11] P. Meakin, L.J. Guggenberger, W.G. Peet, E.L. Muetterties and J.P. Jesson, J. Am. Chem. Soc., 95 (1973) 1467.
- [12] F.G.N. Cloke, P.J. Fyne, V.C. Gibson, M.L.H. Green, M.-J. Ledoux and R.N. Perutz, J. Organometal. Chem., 277 (1984) 61.
- [13] (a) B. Bell, J. Chatt, G.J. Leigh and T. Ito, J. Chem. Soc., Chem. Commun., (1972) 34; (b) J.R. Moss and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1972) 1910.
- [14] M.D. Fryzuk, Organometallics, 1 (1982) 408.
- [15] K.W. Chiu, R.A. Jones, G. Wilkinson, A.M.R. Galas, M.B. Hursthouse and K.M.A. Malik, J. Chem.Soc., Dalton Trans., (1981) 1204.
- [16] D. Gregson, J.A.K. Howard, J.N. Nicholls, J.L. Spencer and D.G. Turner, J. Chem. Soc., Chem. Commun., (1980) 572.
- [17] A.L. Galyer and G. Wilkinson, J. Chem. Soc., Dalton Trans., (1976) 2235.
- [18] C.M. Lukehart, Fundamental Transition Metal Organometallic Chemistry, Brooks/Cole, Monterey, CA, 1985.